Difference between revisions of "TileMerging"

m (Added missing property for the category page.)
m (Other Languages)
Line 122: Line 122:
 
{{#set:Description=Generate rectangles that cover tiles of a certain type on a tile map.}}
 
{{#set:Description=Generate rectangles that cover tiles of a certain type on a tile map.}}
 
== Other Languages ==
 
== Other Languages ==
{{i18n|Tile Merging}}
+
{{i18n|TileMerging}}

Revision as of 13:08, 21 June 2023

This algorithm is for 2D tile maps. The algorithm generates a (hopefully) minimum set of rectangles that cover all tiles of a certain type.

This is useful for physics where you can generate rectangles to cover all wall tiles. You use the rectangles to create physics bodies that can cover multiple wall tiles, instead of create a physics body for every single tile.

-- map_width and map_height are the dimensions of the map
-- is_wall_f checks if a tile is a wall

local rectangles = {} -- Each rectangle covers a grid of wall tiles

for x = 0, map_width - 1 do
    local start_y
    local end_y

    for y = 0, map_height - 1 do
        if is_wall_f(x, y) then
            if not start_y then
                start_y = y
            end
            end_y = y
        elseif start_y then
            local overlaps = {}
            for _, r in ipairs(rectangles) do
                if (r.end_x == x - 1)
                  and (start_y <= r.start_y)
                  and (end_y >= r.end_y) then
                    table.insert(overlaps, r)
                end
            end
            table.sort(
                overlaps,
                function (a, b)
                    return a.start_y < b.start_y
                end
            )

            for _, r in ipairs(overlaps) do
                if start_y < r.start_y then
                    local new_rect = {
                        start_x = x,
                        start_y = start_y,
                        end_x = x,
                        end_y = r.start_y - 1
                    }
                    table.insert(rectangles, new_rect)
                    start_y = r.start_y
                end

                if start_y == r.start_y then
                    r.end_x = r.end_x + 1

                    if end_y == r.end_y then
                        start_y = nil
                        end_y = nil
                    elseif end_y > r.end_y then
                        start_y = r.end_y + 1
                    end
                end
            end

            if start_y then
                local new_rect = {
                    start_x = x,
                    start_y = start_y,
                    end_x = x,
                    end_y = end_y
                }
                table.insert(rectangles, new_rect)

                start_y = nil
                end_y = nil
            end
        end
    end

    if start_y then
        local new_rect = {
            start_x = x,
            start_y = start_y,
            end_x = x,
            end_y = end_y
        }
        table.insert(rectangles, new_rect)

        start_y = nil
        end_y = nil
    end
end

Here's how the rectangles would be used for physics.

-- Use contents of rectangles to create physics bodies
-- phys_world is the world, wall_rects is the list of...
-- wall rectangles

for _, r in ipairs(rectangles) do
    local start_x = r.start_x * TILE_SIZE
    local start_y = r.start_y * TILE_SIZE
    local width = (r.end_x - r.start_x + 1) * TILE_SIZE
    local height = (r.end_y - r.start_y + 1) * TILE_SIZE

    local x = start_x + (width / 2)
    local y = start_y + (height / 2)

    local body = love.physics.newBody(phys_world, x, y, 0, 0)
    local shape = love.physics.newRectangleShape(body, 0, 0,
      width, height)

    shape:setFriction(0)

    table.insert(wall_rects, {body = body, shape = shape})
end

Contributors


Other Languages