Difference between revisions of "Tutorial:Fine Tile-based Scrolling"
m (Other languages (fix)) |
(fix black border) |
||
Line 69: | Line 69: | ||
love.graphics.draw( | love.graphics.draw( | ||
tile[map[y+firstTile_y][x+firstTile_x]], | tile[map[y+firstTile_y][x+firstTile_x]], | ||
− | (x*tile_w) - offset_x - tile_w/2, | + | ((x-1)*tile_w) - offset_x - tile_w/2, |
− | (y*tile_h) - offset_y - tile_h/2) | + | ((y-1)*tile_h) - offset_y - tile_h/2) |
end | end | ||
end | end | ||
Line 104: | Line 104: | ||
end | end | ||
− | if map_x > map_w * tile_w - map_display_w * tile_w then | + | if map_x > map_w * tile_w - map_display_w * tile_w - 1 then |
− | map_x = map_w * tile_w - map_display_w * tile_w | + | map_x = map_w * tile_w - map_display_w * tile_w - 1 |
end | end | ||
− | if map_y > map_h * tile_h - map_display_h * tile_h then | + | if map_y > map_h * tile_h - map_display_h * tile_h - 1 then |
− | map_y = map_h * tile_h - map_display_h * tile_h | + | map_y = map_h * tile_h - map_display_h * tile_h - 1 |
end | end | ||
end | end |
Revision as of 13:31, 8 June 2012
This is an expansion upon the code in Tile-based Scrolling. It assumes a tile size of 16x16 and a window size of 320x240.
function love.load()
-- our tiles
tile = {}
for i=0,3 do -- change 3 to the number of tile images minus 1.
tile[i] = love.graphics.newImage( "tile"..i..".png" )
end
-- the map (random junk + copy and paste)
map={
{ 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0},
{ 3, 1, 0, 0, 2, 2, 2, 0, 3, 0, 3, 0, 1, 1, 1, 0, 0, 3, 0, 0, 0},
{ 3, 1, 0, 0, 2, 0, 2, 0, 3, 0, 3, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0},
{ 3, 1, 1, 0, 2, 2, 2, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 3, 0},
{ 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3},
{ 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 2},
{ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 2, 2, 0, 3, 3, 3, 0, 1, 1, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 0, 0, 0, 3, 0, 3, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 1},
{ 0, 2, 0, 0, 0, 3, 0, 3, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 2, 2, 0, 3, 3, 3, 0, 1, 1, 1, 0, 2, 2, 2, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 0, 0, 2, 2, 2, 0, 3, 0, 3, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0},
{ 0, 1, 0, 0, 2, 0, 2, 0, 3, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 1, 0, 2, 2, 2, 0, 0, 3, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3},
{ 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0},
{ 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
}
-- map variables
map_w = #map[1] -- Obtains the width of the first row of the map
map_h = #map -- Obtains the height of the map
map_x = 0
map_y = 0
map_display_buffer = 2 -- We have to buffer one tile before and behind our viewpoint.
-- Otherwise, the tiles will just pop into view, and we don't want that.
map_display_w = 20
map_display_h = 15
tile_w = 16
tile_h = 16
end
function draw_map()
offset_x = map_x % tile_w
offset_y = map_y % tile_h
firstTile_x = math.floor(map_x / tile_w)
firstTile_y = math.floor(map_y / tile_h)
for y=1, (map_display_h + map_display_buffer) do
for x=1, (map_display_w + map_display_buffer) do
-- Note that this condition block allows us to go beyond the edge of the map.
if y+firstTile_y >= 1 and y+firstTile_y <= map_h
and x+firstTile_x >= 1 and x+firstTile_x <= map_w
then
love.graphics.draw(
tile[map[y+firstTile_y][x+firstTile_x]],
((x-1)*tile_w) - offset_x - tile_w/2,
((y-1)*tile_h) - offset_y - tile_h/2)
end
end
end
end
function love.update( dt )
-- get input
if love.keyboard.isDown( "up" ) then
map_y = map_y-2
end
if love.keyboard.isDown( "down" ) then
map_y = map_y+2
end
if love.keyboard.isDown( "left" ) then
map_x = map_x -2
end
if love.keyboard.isDown( "right" ) then
map_x = map_x+2
end
if love.keyboard.isDown( "escape" ) then
love.event.push( "q" )
end
-- check boundaries. remove this section if you don't wish to be constrained to the map.
if map_x < 0 then
map_x = 0
end
if map_y < 0 then
map_y = 0
end
if map_x > map_w * tile_w - map_display_w * tile_w - 1 then
map_x = map_w * tile_w - map_display_w * tile_w - 1
end
if map_y > map_h * tile_h - map_display_h * tile_h - 1 then
map_y = map_h * tile_h - map_display_h * tile_h - 1
end
end
function love.draw()
draw_map()
end
Other languages
Dansk –
Deutsch –
English –
Español –
Français –
Indonesia –
Italiano –
Lietuviškai –
Magyar –
Nederlands –
Polski –
Português –
Română –
Slovenský –
Suomi –
Svenska –
Türkçe –
Česky –
Ελληνικά –
Български –
Русский –
Српски –
Українська –
עברית –
ไทย –
日本語 –
正體中文 –
简体中文 –
Tiếng Việt –
한국어
More info